Chlorination of Pyrrole. N-Chloropyrrole: Formation and Rearrangement to **2-** and 3-Chloropyrrole'

Michael De Rosa2

Departamento de Quimica, Universidad Simon Bolivar, Caracas, Venezuela 1080-A

Received November 20, *1981*

N-Chloropyrrole **(2)** was formed in 6572% yield when pyrrole **(1)** in CCl, was chlorinated with aqueous NaOC1. This intermediate rearranged in methanol to give chloropyrroles by two distinct reactions: a thermal rearrangement which gave 2-chloropyrrole **(3)** and an acid-catalyzed intermolecular reaction which gave 2-chloropyrrole **(3),** 3-chloropyrrole **(4),** and 2,5-dichloropyrrole **(5).** Nucleophilic attack on the N-Cl bond of **2** was demonstrated by reactions in the presence of CN- and SCN-. In the latter case, 2-(thiocyano)pyrrole was formed.

Nearly 100 years ago the chlorination^{3,4} of pyrrole (1) with NaOCl under homogeneous conditions was reported to give polychlorinated and oxidized products. 5 We have reported the N-chlorination of indoles⁶ and carbazole⁷ with aqueous NaOCl under heterogeneous conditions. It is of interest to study the chlorination of pyrrole under the same conditions which led to the formation of the N-chloro derivatives of indole and carbazole. The controlled chlorination³ of pyrrole and its derivatives is usually effected
with SO_2Cl_2 ⁸ Recently successful chlorinations with Recently successful chlorinations with N -chlorosuccinimide have been reported.⁹ This paper describes the chlorination of pyrrole with NaOCl and some reactions of the initially formed N-chloro intermediate.

Preparation of N-Chloropyrrole. The N-chlorination of pyrrole occurred in 65-72% yield when a solution of pyrrole (1) in CCl_4 was stirred for 2-3 h with an aqueous solution of NaOCl (pH 13) at 0 "C (Scheme **I).** This reaction was exothermic, and the resulting solutions were lachrymatory. The intermediate present in CCI_4 oxidized the iodide ion. Ita spectral properties clearly demonstrated N-substitution: IR $(CCl₄)$ no N-H stretching frequency; ¹H NMR (CCl₄) two apparent triplets¹⁰ at 6.60 $(2 H)$ and 6.08 ppm (2 H); ¹³C NMR (CCl₄) 124.0 (C_{2,5}) and 109.3 ppm $(C_{3,4})$.

Rearrangement of N-Chloropyrrole. A solution of **2** in CC14 was combined with an **equal** volume of methanol, refluxed for 2 h, and analyzed by GC. The products were identified (see below) as: pyrrole (1), 2-chloropyrrole (3),

(7) De Roee, M.; Triana **Alonso,** J. L. 174th National Meeting of the American Chemical Society: Chicago, **IL,** Sept 1977; American Chemical Society: Washington, DC, 1977; ORGN 155.

(8) For some examples, see the following. (a) Cordell, G. A. J. Org.

(8) For some examples, see the following. (a) Cordell, G. A. J. Org.

Chem. 1975, 40, 3161. (b) Motekaitis, R. J.; Heinert, D. H.; Martell, A.

E. *Ibid*

1967,23,4469.

3-chloropyrrole **(4),** and 2,5-dichloropyrrole **(5).** The mixture was analyzed by GC-MS, and spectra were obtained which were identical with those observed when authentic samples of pyrrole, 2-chloropyrrole, a_{11} and 2,5-dichloropyrrole^{8a} were analyzed under the same conditions. Another compound was present whose mass spectrum $(M^+, 101)$ indicated it was an isomer of 2chloropyrrole. This product was isolated by column chromatography on silica gel $(n$ -hexane/CHCl₃, 1:1, v/v) and purified by molecular distillation to give a short-lived liquid whose 'H NMR agreed with that previously reported for 3-chloropyrrole.'2 Pyrrole was isolated by distillation from reactions run in the presence of K_2CO_3 (see the following section). This is the first study in which **3** chloropyrrole **(4)** has been identified as a product of the chlorination of pyrrole (1;¹² Scheme II).

The data summarized in Table I and Figure 1 indicated that the chloropyrroles were formed in two processes: a thermal rearrangement which gave 2-chloropyrrole **(3)** and an acid-catalyzed intermolecular reaction which gave **3,4,** and **5.** Chloropyrroles **4** and **5** almost disappeared when the reaction was run in the presence of the basic ion-exchange $resin^{13}$ Amberlyst A-21 (Figure 1b). These reactions

⁽¹⁾ Presented in part at the *8th* Intemational **Congress** of Heterocyclic Chemistry, Graz, Austria, Aug 1981.

⁽²⁾ *On* sabattical leave Aug 1981-June 1982, Department of Chemistry, University of Florida, 93 Leigh Hall, Gainesville, FL 32611.

⁽³⁾ For a review on **the** chlorination of pyrroles, *8e8* Jones, R. A,; Bean, G. P. 'The Chemistry of Pyrroles"; Academic Press: New York, 1977, pp 129-133.

⁽⁴⁾ For reviews on the electrophilic substitution reactions of the pyrrole ring, see the following: (a) Reference 3, Chapter 4. (b) Marino, G. *Adu. Heterocycl. Chem.* 1971,13,235. (c) Mario, G. *Chim. Ind. (Milan)* 1973,55, 349.

⁽⁵⁾ Ciamician, G.; Silber, P. Chem. *Ber.* 1884,17,1743. Ciamician, G.; Silber, P. *Ibid.* 18&5,18,1763. Ciamician, G.; Silber, P. *Gazz. Chim. Ital.*

^{1884, 14, 356.} Ciamician, G.; Silber, P. Ibid. 1886, 16, 39.

(6) (a) De Rosa, M. J. Chem. Soc., Chem. Commun. 1975, 482. (b) De

Rosa, M.; Triana Alonso, J. L. J. Org. Chem. 1978, 43, 2639. (c) De Rosa, M.; Carbognani, L.; Febres, A. *Ibid*. 1981, 46, 2054. (d) De Rosa, M.;
Carbognani, L.; Fernandez, M. R.; Febres, A. "Abstracts of Papers", 178th
National Meeting of the American Chemical Society: Washington, DC, Aug 1979; American Chemical Society: Washington, DC, 1979; ORGN 183.

Aiello, E.; Dattolo, G.; Cirrincione, G.; Almerico, A. M. 8th Intemational Congress of Heterocyclic Chemistry: Graz, Austria, Aug 1981. (10) Jones, R. A.; Mcl. Spotswood, T.; Cheuychit, P. *Tetrahedron*

⁽¹¹⁾ Cordell, G. A. *Spectrosc. Lett.* 1975, *8,* 983.

⁽¹²⁾ Photolysis of 3-chloropyridine N-oxide yielded 3-chloropyrrole. Bellamy, F.; Streith, J.; Fritz, H. *Nouu.* J. *Chim.* 1979, *3,* 115.

Table I. Reactions **of** N-Chloropyrrole in Methanol

*^a*A 5.0-mL solution of **2** in CC1, was combined with 5.0 mL of CH,OH, base (nucleophile) was added, and the mixture refluxed. ^b Except where noted, yields are base on percent of total area (± 1 -3%). Two grams of K₂CO₃. a Method of internal standard (naphthalene). **e** Reaction was over on mixing solutions (60 **s).** *f* Two grams of Amberlyst A-21. **g** Molar ratio **of** anisole to 2 was 15:l. Molar ratio 5:l with respect to 2. No change in product distribution was noted when the the reaction was run at 55 "C.

Figure 1. (a) Reaction in $\text{CCl}_4-\text{CH}_3\text{OH}$ (1:1, v/v), (b) reaction in the presence of Amberlyst A-21, (c) reaction in the presence of added pyrrole (ratio of pyrrole to N-chloropyrrole 5:l).

were also slower. The intermolecularity of the acid-catalyzed reaction was demonstrated by the results in the presence **of** added pyrrole (Figure **IC)** and N-methylpyrrole (Table I).14 The relative proportion of monochloropyrroles **3** and **4** to that of 2,5-dichloropyrrole **(5)** increased from 2.8:1 to 99:1 when pyrrole was added. In the presence of N-methylpyrrole the yields of all the chloropyrroles decreased. Clearly, 2-chloropyrrole **(3)** was formed in a slow,

acid-independent step and also in a faster, acid-catalyzed reaction (Scheme 111).

The products obtained in the presence of $acid^{16}$ indicated that pyrrole underwent electrophilic attack by C1+ or ita equivalent. Thermal rearrangement of **2** was slower than this acid-catalyzed reaction; therefore, the results obtained in the presence of excess pyrrole should be indicative of the relative reactivity of the α and β positions of pyrrole toward a source **of** C1+. The ratio1' of 2-chloroto 3-chloropyrrole was 1.9:l under these conditions. Similar ratios have been previously reported for the nitration,¹⁸ protodedeuteration,¹⁹ and acetylation²⁰ of pyrrole. The conjugate acid of N-chloropyrrole **(2)** was the most likely source of $Cl⁺$.

Electrophilic substitution reactions of pyrrole are characterized by low positional selectivity and high relative reactivity.⁴ No significant change was noted in the total yield of chloropyrroles when either anisole or furan was present in the reaction mixture. This and the low α to β ratio were in accord with these trend^.^ Thermal rearrangement **of 2** to give 2-chloropyrrole **(3)** was analogous to the thermal rearrangement of N-acetylpyrrole.^{21,22}

Dechlorination of N-Chloropyrrole. It was observed (Table I) that reactions in K_2CO_3/CH_3OH were faster than with just $CH₃OH$, and much faster than when Amberlyst A-21 was present. This suggested the possibility that

(21) Reference **3,** pp **157-158** and **252. (22)** Kutacher, **W.;** Kaluza, G. *Chem. Ber.* **1966,99,3712.** Patterson, J. M.; Bruser, D. M. *Tetrahedon Lett.* **1973, 2959** (see footnote **8).**

⁽¹³⁾ Amberlyst **A-21** (The Rohm and Hass Co.) is a weakly basic macrorecticular ion exchange resin. It was dried prior to use by a
zeotropic distillation with benzene. The resin was then air-dried and washed
repeatedly with CH₃OH. The product obtained in CH₃OH was combined
with th the pyrroles was noted. When triethylamine or tri-n-butylamine was used **as** the base, similar changes in the product distribution were noted. A

number of new products were also observed.

(14) *N*-Methylpyrrole¹⁵ (99.8%) was obtained by preparative GC.

⁽¹⁵⁾ Heaney, H.; Ley, S. V. *J. Chem. SOC., Perkin Trans. 1* **1973,499. (16)** Reactions in methanol produced acid. HC1 vapors were detected in reactions run in a closed system at room temperature.

⁽¹⁷⁾ A mixture containing the chloropyrroles was refluxed for **16** h. Decomposition occurred **as** evidenced by change in peak heights in the gas chromatogram. The relative proportions of 1 and 3 were affected the most. The ratio determined by GC (assuming equal detector response) is most likely a minimum value.

⁽¹⁸⁾ Cooksey, A. R.; Morgan, K. J.; Morrey, D. P. Tetrahedron 1970,
26, 5101. Fournari, P.; Tirouflet, J. Bull. Soc. Chim. Fr. 1963, 484.
Anderson, H. J. Can. J. Chem. 1957, 35, 21.
(19) Schwettlick, K.; Unverferth, K. J.

carbonate was participating in the dechlorination process. Nucleophilic attack on the chloro group of the N-C1 bond **of 2** was demonstrated by reactions run in the presence of CN- and SCN-. Dechlorination of **2** with CN- took less than 60 s and a 92-94% yield of pyrrole was observed. Reactions run in the presence of SCN-, at room temperature, were over in 60 min. A residue was isolated whose spectral properties indicated that it was essentially pure 2-(thiocyano)pyrrole.²³ A 12-15% yield of pyrrole was detected by GC 60 s after the reaction with SCN⁻ was initiated. Less than 5% of pyrrole could be detected at the end of the reaction. Reductive dechlorination gave the pyrrole anion and $(SCN)_2$.²⁴ The anion abstracted a proton to give pyrrole, which subsequently reacted with $(SCN)_2$ (Scheme IV).

It would be expected that the ratio **of** pyrrole (1) to 2,5-dichloropyrrole **(5)** should be **1** in reactions run under conditions where the acid-catalyzed process predominated. The yields of 1 were always greater than that of **5.** It is likely that the heterolysis of the N-Cl bond was a favorable process even in the absence of any added nucleophile. Assistance by $CH₃OH$ was probable.

The results of this study can be contrasted with similar studies on indole. Initially, an N-chloro derivative was formed, but base (K_2CO_3) was found to promote the rearrangement of N-chloroindole to 3-chloroindole. 6b No evidence for dechlorination was detected. Studies on the chlorination of pyrroles and similar heteroaromatic amines are continuing.

Experimental Section

Infrared spectra were taken on a Perkin-Elmer 567 spectrophotometer. **A** Varian T-60 was used for recording 'H NMR spectra and a Brucker WP-80 for ¹³C NMR spectra. GC analysis was carried out on a Hewlett Packard **5850A** gas chromatograph, a Gas Chrom Q column with temperature programming. The reaction was followed by standard iodometric methods. Pyrrole was distilled prior to use from zinc dust. Solutions of NaOCl were prepared by passing Cl₂ through a solution of NaOH, and the resulting solutions were ca. 1 M and pH 13. **Caution:** Solutions of N-chloropyrrole are lachrymatory.

N-Chlorination of Pyrrole. To a vigorously stirred solution containing 1.34 g (20.0 mmol) of pyrrole in 50.0 mL of carbon tetrachloride at 0 $^{\rm o}{\rm C}$ was added 100 mL of a cold aqueous solution of NaOCl. The mixture was stirred for 2-3 h at $0 °C$ and the organic layer was separated and dried by passing it through a short column containing anhydrous potassium carbonate. **A** 65-72% yield (iodometric analysis) of \overline{N} -chloropyrrole was obtained: IR (CCl₄) no N-H stretching frequency; ^IH NMR (CCl₄) δ 6.60 (t, 2 H), 6.08 (t, 2 H); ¹³C NMR (CCl₄) δ 124.0 (C_{2,5}), 109.3 (C_{3,4}).

The fresh solution was pink and faded to yellow in the presence of light or during storage. It could be stored for up to **2** weeks at 0° C over K_2CO_3 with little alteration.

Rearrangement of N-Chloropyrrole. To **5.0** mL of CC14 containing N-chloropyrrole **(2)** was added 5.0 mL of methanol analyzed by GC, and the following were identified as products of the reaction: pyrrole (30%), 2-chloropyrrole (31%), 3 chloropyrrole (13%), and 2,5-dichloropyrrole (16%). The mixture was analyzed by GC-MS, and mass spectra were obtained which were identical with those observed when authentic samples of pyrrole (mass spectrum, *m/e* (relative intensity) 67 (M, 100), 41 $(M - CN, 44)$, 40 $(M - HCN, 61)$; 2-chloropyrrole (mass spectrum,¹¹ m/e (relative intensity) 103 (M + 2, 36), 101 (M + 2, 100), 74 ($M - HCN$, 28), 66 ($M - Cl$, 19)); and 2,5-dichloropyrrole (mass spectrum, m/e (relative intensity) 139 (M + 4, 10), 137 (M + 2, - C1- HCN, Sl)] were analyzed under the same conditions. The mass spectrum of 3-chloropyrrole [mass spectrum, *m/e* (relative intensity) 103 (M + 2, 30), 101 (M, 100), 74 (M – HCN, 16), 66 $(M - Cl, 15)$ was quite similar to that of 2-chloropyrrole (3) . 3-Chloropyrrole was isolated as follows. **A** solution containing 8.90 g (0.13 mol) of pyrrole in 300 mL of $CCl₄$ was stirred with 300 mL of NaOCl at 0 "C for 2 h and **2** was isolated **as** described above. The solution containing **2** was combined with 300 mL of methanol and refluxed for 3.5 h. The solvent was partially removed by evaporative distillation at reduced pressure. To the cooled residue was added 10 g of silica gel G-60 (Merck) and the remaining solvent was removed at reduced pressure. The *dry* **silica** gel containing the product mixture was transferred to the top of a column packed with 500 g of silica gel and eluted with n -hexane-CHCl₃ (1:1, v/v), and 100-mL fractions were collected. Fractions 4-6 contained 2,5-dichloropyrrole and fractions 10-14 contained 3-chloropyrrole. These later fractions were combined, and the solvent was removed by evaporative distillation at reduced pressure. The residue was distilled in a short-path distillation apparatus at 40-42 "C (0.2 mm). **A** short-lived liquid was obtained which quickly turned blue. Its mass spectrum (see above) and ¹H NMR (CCl₄) [δ 6.00–6.18 (m, 1 H), 6.52–6.70 (m, 2 H)] indicated the formation of 3-chloropyrrole **(4).** 57), 135 (M, 100), 100 (M - Cl, 17), 74 (M - Cl - CN, 17), 73 (M

Acknowledgment. This investigation was supported in part by Grant No. 32-26-S1-0641 from the Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICIT). We thank Dr. J. D. Medina, Lic. M. Gomez, and Lic. C. Cabello of the Instituto Venezolano de Investigaciones Cientificas (IVIC) for the gas chromatography/mass spectroscopy and Professors **A.** Rojas and B. Mendez of the Universidad Central de Venezuela for the 13C NMR spectra.

Registry No. 1, 109-97-7; 2, 80263-41-8; 3, 56454-22-9; 4, 69624-11-9; **5,** 56454-23-0.

⁽²³⁾ Gronowitz, S.; Hornfeldt, A. B.; Gestblom, B.; Hoffman, R. A. J. Org. *Chem.* 1961,26,2615. Matteson, D. S.; Snyder, H. R. *Ibid.* 1957,22, 1500.

⁽²⁴⁾ Methoxide ion has been reported to effect the dechlorination of N-chloro and N,N-dichloro derivatives of some phosphinic amides (Harger, M. J. P.; Stephen, M. A. J. *Chem.* SOC., *Perkin* Trans *1* 1980, 705). Reductive dechlorination of 3-chloro-3H-indoles with **SCN-** has been reported to give 6-thiocyanoindoles by a mechanism analogous to that proposed in this work (Tamura, Y.; Chun, M. W.; Nishida, H.; Ikeda, M. Heterocycles 1977,8, 313).

⁽²⁵⁾ The reaction mixture also contained **an** unidentified compound (retention time 4.03 min) whose mass spectrum indicated that it did not contain chlorine.